TABLE 1

WATER BALANCE EXAMPLE

(All Units are Inches of Water per Acre of Irrigated Area)

	a	b	Ri	С	d		0.07	е	f	g
						m . 1	Effluent	D	Effluent	
						Total	Needed in	Evaporation	to be	Consumption
	A	A	Average	F	D	water	Root	Irom	applied	Irom
Month	AVg.	Average	Infiltrated	Evapotrans-	Required	Needs	Zone	Reservoir	to Land	Reservoir
Month	Precip.	Runon	Kaiman	piration	Leaching	(5)+(6)	(7)-(4)	surface	(ð) / K	(9)+(10)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Jan.	2.11	0.40	1.71	0.80	0.00	0.80	0.00	0.02	0.00	0.02
Feb.	2.43	0.57	1.86	1.20	0.00	1.20	0.00	0.01	0.00	0.01
Mar.	2.02	0.36	1.66	2.80	0.20	3.00	1.34	0.09	1.58	1.67
April	3.19	1.03	2.16	3.40	0.22	3.63	1.46	0.05	1.72	1.77
May	4.19	1.74	2.45	6.10	0.64	6.74	4.29	0.10	5.05	5.15
June	3.30	1.10	2.20	6.50	0.76	7.26	5.06	0.20	5.95	6.15
July	2.20	0.45	1.75	6.70	0.87	7.57	5.82	0.34	6.85	7.19
Aug.	2.12	0.41	1.71	4.60	0.51	5.11	3.40	0.34	4.00	4.34
Sept.	3.58	1.30	2.28	5.10	0.50	5.60	3.32	0.19	3.91	4.10
Oct.	3.09	0.96	2.13	4.10	0.35	4.45	2.32	0.14	2.73	2.87
Nov.	2.23	0.46	1.77	2.10	0.06	2.16	0.39	0.07	0.46	0.53
Dec.	2.34	0.52	1.82	1.00	0.00	1.00	0.00	0.03	0.00	0.03
	32.80	9.30	23.50	44.40	4.11	48.51	27.40	1.58	32.25	33.83

- a. Up-to-date rainfall and evaporation data sets are available from the Texas Natural Resource Information System.
- b. Runoff should be determined by an acceptable method such as the Soil Conservation Service method found in SCS Technical Release No. 55. For example, purposes only, a CN value of 74 was assumed for good pasture with Class "C" soils.
- c. Suggested source of values is the "Bulletin 6019, Consumptive Use of Water by Major Crops in Texas," Texas Board of Water Engineers.
- d. In low rainfall areas, this is the required leaching to avoid salinity build-up in the soil is calculated using the following equation:

 $L = \underline{Ce (E-Ri)}$ Cl-Ce

Where:

Ce = Electrical Conductivity of Effluent

E = Evapotranspiration

Ri = Infiltrated Rainfall

Cl= Maximum Allowable Conductivity of Soil Solution (Table 3)

For example purposes only, a Ce value of 1.5 millimhos/cm at 25°C and a Cl value of 10.0 (Bermuda Grass) were used.

- e. Net Average Evaporation from Reservoir Surface. For example purposes only, irrigation area = 100 acres and reservoir surface area = 5 acres. Therefore, values are 5% of Evaporation figures of Austin, Texas.
- f. K is the irrigation efficiency. K value is 0.85 unless specific information is provided to support a different value.
- g. The total of this column is the maximum allowable application rate in acre-inch per acre per year.

TABLE 2 EXAMPLE CALCULATION OF STORAGE VOLUME REQUIREMENTS (All Units are Inches of Water per Acre of Irrigated Area)

	а	b	С			d	e	f
	Effluent	Rainfall						
	Received for	Highest	Runoff			Net		
	Application	Year in	Highest Year	Infiltrated	Available	25 Year Low		
	or	Past 25	in Past 25	Rainfall	Water	Evaporation		Accumulated
Month	Storage	Year	Year	(14) - (15)	(13) + (16)	from Regur.	Storage	Storage
						Surf.		
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
Jan.	2.70	3.28	1.09	2.19	4.89	0.00	2.69	8.49
Feb.	2.70	3.80	1.45	2.35	5.05	0.01	2.69	11.18
Mar.	2.70	3.18	1.02	1.26	4.86	0.04	1.67	12.85
April	2.70	4.98	2.35	2.63	5.33	0.02	1.51	14.36
May	2.70	6.57	3.67	2.90	5.60	0.04	-1.86	12.50
June	2.70	5.13	2.47	2.66	5.36	0.09	-2.80	9.70
July	2.70	3.44	1.20	2.24	4.94	0.16	-3.73	5.97
Aug.	2.70	3.33	1.12	2.21	4.91	0.16	-0.87	5.10
Sept.	2.70	5.59	2.84	2.75	5.45	0.08	-0.74	4.36
Oct.	2.70	4.82	2.22	2.60	5.30	0.07	0.45	0.45
Nov.	2.70	3.49	1.23	2.26	4.96	0.03	2.67	3.12
Dec.	2.70	3.64	1.34	2.30	5.00	0.02	2.68	5.80
	32.40	51.25	22.00	29.25	61.65	0.73		

a. For example purposes only, disposal rate is for a 240,000 gpd facility (2.7 acre-feet per acre per year) irrigating 100 acres. Maximum values for Column 13 are the value (total) of Column 11 divided by 12. Note that the values in Column 13 could be adjusted to allow for seasonal variation in effluent output.

b. Annual rainfall amount from the highest year in past 25 years of data. Total rainfall is then distributed proportional to monthly averages.

c. Using rainfall figures in Column 14, calculate runoff with the same method used in Column 3.

- d. Lowest annual evaporation in past 25 years from reservoir surface. Distribute annual value proportionally to monthly average evaporation expressed in inches per irrigated acre. For example purposes only, irrigation area = 100 acres and reservoir surface area = 5 acres. Therefore, values in Column 18 are 5% of evaporation figures for Austin, Texas.
- e. Storage = [(13) (18)]- $\{[(7)-(16)]/k\}$. If the term $\{[(7)-(16)]/k\}$ is negative, then the value for storage = [(13)-(18)]. Irrigation efficiency is 0.85 unless specific information is provided to support a different value.
- f. To allow for the worst condition, the summation was started in October which gives a maximum storage requirement of 14.36 inches per irrigated acre or 120 acre-feet.

TABLE 3Salt Tolerance of Various Crop Plants

Best growth yields of each crop would occur at a salinity level below the salinity range given.

Relatively Nontolerant	Moderately Salt Tolerant	Relatively Salt Tolerant	Highly Salt Tolerant				
2.0 - 4.0	4.0 - 6.0	6.0 - 8.0	8.0 - 12.0				
Field Crops							
Field bean Cowpeas Corn (field)	Sorghum (grain) Rye (grain) Castorbean Soybean	Cotton Sugar beet Wheat (grain) Oats (grain) Rice	Barley (grain) Rape				
Forage Crops							
White clover Alsike clover Red clover Ladino clover Crimson clover Rose clover Burnet clover	Tall fescue Meadow fescue Orchard-grass Millet Sour clover Birdsfoot trefoil	Wheat-grasses Sudan grass Sweetclover Alfalfa Ryegrass Rye (hay) Wheat (hay) Oats (hay)	Alkali sacaton Bermuda grass Barley (hay) Rhodesgrass Blue grama Panicgrass				