<<Prev Rule

Texas Administrative Code

Next Rule>>
TITLE 19EDUCATION
PART 2TEXAS EDUCATION AGENCY
CHAPTER 112TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR SCIENCE
SUBCHAPTER BMIDDLE SCHOOL
RULE §112.20Science, Grade 8, Adopted 2017

(a) Introduction.

  (1) Grade 8 science is interdisciplinary in nature; however, much of the content focus is on earth and space science. National standards in science are organized as multi-grade blocks such as Grades 5-8 rather than individual grade levels. In order to follow the grade level format used in Texas, the various national standards are found among Grades 6, 7, and 8. Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include change and constancy, patterns, cycles, systems, models, and scale. The strands for Grade 8 include the following.

    (A) Scientific investigation and reasoning.

      (i) To develop a rich knowledge of science and the natural world, students must become familiar with different modes of scientific inquiry, rules of evidence, ways of formulating questions, ways of proposing explanations, and the diverse ways scientists study the natural world and propose explanations based on evidence derived from their work.

      (ii) Scientific investigations are conducted for different reasons. All investigations require a research question, careful observations, data gathering, and analysis of the data to identify the patterns that will explain the findings. Descriptive investigations are used to explore new phenomena such as conducting surveys of organisms or measuring the abiotic components in a given habitat. Descriptive statistics include frequency, range, mean, median, and mode. A hypothesis is not required in a descriptive investigation. On the other hand, when conditions can be controlled in order to focus on a single variable, experimental research design is used to determine causation. Students should experience both types of investigations and understand that different scientific research questions require different research designs.

      (iii) Scientific investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations, and the methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work. Models have limitations and based on new discoveries are constantly being modified to more closely reflect the natural world.

    (B) Matter and energy. Students recognize that matter is composed of atoms. Students examine information on the Periodic Table to recognize that elements are grouped into families. In addition, students understand the basic concept of conservation of mass. Lab activities will allow students to demonstrate evidence of chemical reactions. They will use chemical formulas to identify substances.

    (C) Force, motion, and energy. Students experiment with the relationship between forces and motion through the study of Newton's three laws. Students learn how these forces relate to geologic processes and astronomical phenomena. In addition, students recognize that these laws are evident in everyday objects and activities. Mathematics is used to calculate speed using distance and time measurements.

    (D) Earth and space. Students identify the role of natural events in altering Earth systems. Cycles within Sun, Earth, and Moon systems are studied as students learn about seasons, tides, and lunar phases. Students learn that stars and galaxies are part of the universe. In addition, students use data to research scientific theories of the origin of the universe. Students will illustrate how Earth features change over time by plate tectonics. They will interpret land and erosional features on topographic maps and satellite views. Students learn how interactions in solar, weather, and ocean systems create changes in weather patterns and climate.

    (E) Organisms and environments. In studies of living systems, students explore the interdependence between these systems. Students describe how biotic and abiotic factors affect the number of organisms and populations present in an ecosystem. In addition, students explore how organisms and their populations respond to short- and long-term environmental changes, including those caused by human activities.

  (2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable.

  (3) Scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions become theories. Scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Students should know that scientific theories, unlike hypotheses, are well established and highly reliable, but they may still be subject to change as new information and technologies are developed. Students should be able to distinguish between scientific decision-making methods and ethical/social decisions that involve the application of scientific information.

  (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(b) Knowledge and skills.

  (1) Scientific investigation and reasoning. The student, for at least 40% of instructional time, conducts laboratory and field investigations following safety procedures and environmentally appropriate and ethical practices. The student is expected to:

    (A) demonstrate safe practices during laboratory and field investigations as outlined in Texas Education Agency-approved safety standards; and

    (B) practice appropriate use and conservation of resources, including disposal, reuse, or recycling of materials.

  (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and field investigations. The student is expected to:

    (A) plan and implement comparative and descriptive investigations by making observations, asking well defined questions, and using appropriate equipment and technology;

    (B) design and implement experimental investigations by making observations, asking well defined questions, formulating testable hypotheses, and using appropriate equipment and technology;

    (C) collect and record data using the International System of Units (SI) and qualitative means such as labeled drawings, writing, and graphic organizers;

    (D) construct tables and graphs, using repeated trials and means, to organize data and identify patterns; and

    (E) analyze data to formulate reasonable explanations, communicate valid conclusions supported by the data, and predict trends.

  (3) Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions and knows the contributions of relevant scientists. The student is expected to:

    (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;

    (B) use models to represent aspects of the natural world such as an atom, a molecule, space, or a geologic feature;

    (C) identify advantages and limitations of models such as size, scale, properties, and materials; and

    (D) relate the impact of research on scientific thought and society, including the history of science and contributions of scientists as related to the content.

  (4) Scientific investigation and reasoning. The student knows how to use a variety of tools and safety equipment to conduct science inquiry. The student is expected to:

    (A) use appropriate tools, including lab journals/notebooks, beakers, meter sticks, graduated cylinders, anemometers, psychrometers, hot plates, test tubes, spring scales, balances, microscopes, thermometers, calculators, computers, spectroscopes, timing devices, and other necessary equipment to collect, record, and analyze information; and

    (B) use preventative safety equipment, including chemical splash goggles, aprons, and gloves, and be prepared to use emergency safety equipment, including an eye/face wash, a fire blanket, and a fire extinguisher.

  (5) Matter and energy. The student knows that matter is composed of atoms and has chemical and physical properties. The student is expected to:

    (A) describe the structure of atoms, including the masses, electrical charges, and locations, of protons and neutrons in the nucleus and electrons in the electron cloud;

Cont'd...

Next Page

Link to Texas Secretary of State Home Page | link to Texas Register home page | link to Texas Administrative Code home page | link to Open Meetings home page