<<Prev Rule

Texas Administrative Code

Next Rule>>
TITLE 19EDUCATION
PART 2TEXAS EDUCATION AGENCY
CHAPTER 112TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR SCIENCE
SUBCHAPTER BMIDDLE SCHOOL
RULE §112.26Science, Grade 6, Adopted 2021

(a) Introduction.

  (1) In Grades 6 through 8 Science, content is organized into recurring strands. The concepts within each grade level build on prior knowledge, prepare students for the next grade level, and establish a foundation for high school courses. In Grade 6, the following concepts will be addressed in each strand.

    (A) Scientific and engineering practices. Scientific inquiry is the planned and deliberate investigation of the natural world using scientific and engineering practices. Scientific methods of investigation are descriptive, correlative, comparative, or experimental. The method chosen should be appropriate to the grade level and question being asked. Student learning for different types of investigations includes descriptive investigations, which have no hypothesis that tentatively answers the research question and involve collecting data and recording observations without making comparisons; correlative and comparative investigations, which have a hypothesis that predicts a relationship and involve collecting data, measuring variables relevant to the hypothesis that are manipulated, and comparing results; and experimental investigations, which involve processes similar to comparative investigations but in which a hypothesis can be tested by comparing a treatment with a control.

      (i) Scientific practices. Students ask questions, plan and conduct investigations to answer questions, and explain phenomena using appropriate tools and models.

      (ii) Engineering practices. Students identify problems and design solutions using appropriate tools and models.

    (B) Matter and energy. Students build upon their knowledge of properties of solids, liquids, and gases and further explore their molecular energies. In Grade 6, students learn how elements are classified as metals, nonmetals, or metalloids based on their properties on the Periodic Table. Students have previous experience with mixtures in Grade 5. Grade 6 furthers their understanding by investigating the different types of mixtures. Subsequent grades will learn about compounds. In Grade 6, students compare the density of substances relative to fluids and identify evidence of chemical changes.

    (C) Force, motion, and energy. Students investigate the relationship between force and motion using a variety of means, including calculations and measurements through the study of Newton's Third Law of Motion. Subsequent grades will study force and motion through Newton's First and Second Laws of Motion. Energy occurs as either potential or kinetic energy. Potential energy can take several forms, including gravitational, elastic, and chemical energy. Energy is conserved throughout systems by changing from one form to another and transfers through waves.

    (D) Earth and space. Cycles within Sun, Earth, and Moon systems are studied as students learn about seasons and tides. Students identify that the Earth is divided into spheres and examine the processes within and organization of the geosphere. Researching the advantages and disadvantages of short- and long-term uses of resources enables informed decision making about resource management.

    (E) Organisms and environments. All living organisms are made up of smaller units called cells. Ecosystems are organized into communities, populations, and organisms. Students compare and contrast variations within organisms and how they impact survival. Students examine relationships and interactions between organisms, biotic factors, and abiotic factors in an ecosystem.

  (2) Nature of science. Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not currently scientifically testable.

  (3) Scientific observations, inferences, hypotheses, and theories. Students are expected to know that:

    (A) observations are active acquisition of either qualitative or quantitative information from a primary source through the senses;

    (B) inferences are conclusions reached on the basis of observations or reasoning supported by relevant evidence;

    (C) hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions are incorporated into theories; and

    (D) scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well established and highly reliable explanations, but they may be subject to change as new areas of science and new technologies are developed.

  (4) Science and social ethics. Scientific decision making is a way of answering questions about the natural world involving its own set of ethical standards about how the process of science should be carried out. Students distinguish between scientific decision-making practices and ethical and social decisions that involve science.

  (5) Recurring themes and concepts. Science consists of recurring themes and making connections between overarching concepts. Recurring themes include structure and function, systems, models, and patterns. All systems have basic properties that can be described in space, time, energy, and matter. Change and constancy occur in systems as patterns and can be observed, measured, and modeled. These patterns help to make predictions that can be scientifically tested. Models have limitations but provide a tool for understanding the ideas presented. Students analyze a system in terms of its components and how these components relate to each other, to the whole, and to the external environment.

  (6) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(b) Knowledge and skills.

  (1) Scientific and engineering practices. The student, for at least 40% of instructional time, asks questions, identifies problems, and plans and safely conducts classroom, laboratory, and field investigations to answer questions, explain phenomena, or design solutions using appropriate tools and models. The student is expected to:

    (A) ask questions and define problems based on observations or information from text, phenomena, models, or investigations;

    (B) use scientific practices to plan and conduct descriptive, comparative, and experimental investigations and use engineering practices to design solutions to problems;

    (C) use appropriate safety equipment and practices during laboratory, classroom, and field investigations as outlined in Texas Education Agency-approved safety standards;

    (D) use appropriate tools such as graduated cylinders, metric rulers, periodic tables, balances, scales, thermometers, temperature probes, laboratory ware, timing devices, pH indicators, hot plates, models, microscopes, slides, life science models, petri dishes, dissecting kits, magnets, spring scales or force sensors, tools that model wave behavior, satellite images, hand lenses, and lab notebooks or journals;

    (E) collect quantitative data using the International System of Units (SI) and qualitative data as evidence;

    (F) construct appropriate tables, graphs, maps, and charts using repeated trials and means to organize data;

    (G) develop and use models to represent phenomena, systems, processes, or solutions to engineering problems; and

    (H) distinguish between scientific hypotheses, theories, and laws.

  (2) Scientific and engineering practices. The student analyzes and interprets data to derive meaning, identify features and patterns, and discover relationships or correlations to develop evidence-based arguments or evaluate designs. The student is expected to:

    (A) identify advantages and limitations of models such as their size, scale, properties, and materials;

    (B) analyze data by identifying any significant descriptive statistical features, patterns, sources of error, or limitations;

    (C) use mathematical calculations to assess quantitative relationships in data; and

    (D) evaluate experimental and engineering designs.

  (3) Scientific and engineering practices. The student develops evidence-based explanations and communicates findings, conclusions, and proposed solutions. The student is expected to:

    (A) develop explanations and propose solutions supported by data and models and consistent with scientific ideas, principles, and theories;

    (B) communicate explanations and solutions individually and collaboratively in a variety of settings and formats; and

Cont'd...

Next Page

Link to Texas Secretary of State Home Page | link to Texas Register home page | link to Texas Administrative Code home page | link to Open Meetings home page