<<Prev Rule

Texas Administrative Code

Next Rule>>
RULE §112.36Earth and Space Science, Beginning with School Year 2010-2011 (One Credit)

    (D) describe the formation and structure of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts and auroras.

  (10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:

    (A) investigate how new conceptual interpretations of data and innovative geophysical technologies led to the current theory of plate tectonics;

    (B) describe how heat and rock composition affect density within Earth's interior and how density influences the development and motion of Earth's tectonic plates;

    (C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents;

    (D) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict future motions, locations, and resulting geologic features;

    (E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes; and

    (F) evaluate the role of plate tectonics with respect to long-term global changes in Earth's subsystems such as continental buildup, glaciation, sea level fluctuations, mass extinctions, and climate change.

  (11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:

    (A) compare the roles of erosion and deposition through the actions of water, wind, ice, gravity, and igneous activity by lava in constantly reshaping Earth's surface;

    (B) explain how plate tectonics accounts for geologic surface processes and features, including folds, faults, sedimentary basin formation, mountain building, and continental accretion;

    (C) analyze changes in continental plate configurations such as Pangaea and their impact on the biosphere, atmosphere, and hydrosphere through time;

    (D) interpret Earth surface features using a variety of methods such as satellite imagery, aerial photography, and topographic and geologic maps using appropriate technologies; and

    (E) evaluate the impact of changes in Earth's subsystems on humans such as earthquakes, tsunamis, volcanic eruptions, hurricanes, flooding, and storm surges and the impact of humans on Earth's subsystems such as population growth, fossil fuel burning, and use of fresh water.

  (12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:

    (A) evaluate how the use of energy, water, mineral, and rock resources affects Earth's subsystems;

    (B) describe the formation of fossil fuels, including petroleum and coal;

    (C) discriminate between renewable and nonrenewable resources based upon rate of formation and use;

    (D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs; and

    (E) explore careers that involve the exploration, extraction, production, use, and disposal of Earth's resources.

  (13) Fluid Earth. The student knows that the fluid Earth is composed of the hydrosphere, cryosphere, and atmosphere subsystems that interact on various time scales with the biosphere and geosphere. The student is expected to:

    (A) quantify the components and fluxes within the hydrosphere such as changes in polar ice caps and glaciers, salt water incursions, and groundwater levels in response to precipitation events or excessive pumping;

    (B) analyze how global ocean circulation is the result of wind, tides, the Coriolis effect, water density differences, and the shape of the ocean basins;

    (C) analyze the empirical relationship between the emissions of carbon dioxide, atmospheric carbon dioxide levels, and the average global temperature trends over the past 150 years;

    (D) discuss mechanisms and causes such as selective absorbers, major volcanic eruptions, solar luminance, giant meteorite impacts, and human activities that result in significant changes in Earth's climate;

    (E) investigate the causes and history of eustatic sea-level changes that result in transgressive and regressive sedimentary sequences; and

    (F) discuss scientific hypotheses for the origin of life by abiotic chemical processes in an aqueous environment through complex geochemical cycles given the complexity of living systems.

  (14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is expected to:

    (A) analyze the uneven distribution of solar energy on Earth's surface, including differences in atmospheric transparency, surface albedo, Earth's tilt, duration of insolation, and differences in atmospheric and surface absorption of energy;

    (B) investigate how the atmosphere is heated from Earth's surface due to absorption of solar energy, which is re-radiated as thermal energy and trapped by selective absorbers; and

    (C) explain how thermal energy transfer between the ocean and atmosphere drives surface currents, thermohaline currents, and evaporation that influence climate.

  (15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:

    (A) describe how changing surface-ocean conditions, including El Niño-Southern Oscillation, affect global weather and climate patterns;

    (B) investigate evidence such as ice cores, glacial striations, and fossils for climate variability and its use in developing computer models to explain present and predict future climates;

    (C) quantify the dynamics of surface and groundwater movement such as recharge, discharge, evapotranspiration, storage, residence time, and sustainability;

    (D) explain the global carbon cycle, including how carbon exists in different forms within the five subsystems and how these forms affect life; and

    (E) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation, sea level, algal growth, coral bleaching, hurricane intensity, and biodiversity.

Source Note: The provisions of this §112.36 adopted to be effective August 4, 2009, 34 TexReg 5062

Previous Page

Link to Texas Secretary of State Home Page | link to Texas Register home page | link to Texas Administrative Code home page | link to Open Meetings home page